The Sainte Claire Hotel

-

This Year

#CogComputing

Official Conference Hashtag

Register Today!

Register 2 and Get 3rd Free

Speakers

Forward Thinking Industry Leaders

Speaker 5

Tom Mitchell

Professor of AI and Learning
Carnegie Mellon University

Speaker 1

Ramanathan V. Guha

Fellow
Google

Speaker 4

Chris Welty

Research Scientist
IBM T.J. Watson Research Center

Speaker 1

Subutai Ahmad

VP Research
Numenta, Inc.

Speaker 1

Lora Aroyo

Associate Professor
VU University of Amsterdam

Speaker 2

Joshua Bloom

CTO, Chairman, and Founder
Wise.io

Speaker 2

Ted Dunning

Chief Application Architect
MapR

Speaker 4

Roger Grosse

Postdoctoral Fellow
University of Toronto

Speaker 5

Kristian Hammond

Chief Scientist
Narrative Science

Speaker 3

Robin Hanson

Chief Scientist
Consensus Point

Speaker 4

Paul Hofmann

Chief Technology Officer
Saffron Technology

Speaker 4

Pentti Kanerva

Project Scientist
UC Berkeley's Redwood Center

Speaker 4

Patrick Lilley

CEO
Emerald Logic

Speaker 6

Vivienne Ming

Chief Scientist
Gild

Speaker 6

Igal Rachelgauz

CEO
Cortica

Speaker 4

Mark Sagar

Director
Laboratory for Animate Technologies

Speaker 6

Karl Schroeder

Author
Science Fiction

Speaker 4

Dave Sullivan

Primary Architect
Ersatz Labs

  • Cognitive Computing and the Future

    Chris Welty
    Research Scientist, IBM


    At WWW 2011, soon after the notable performance of Watson on Jeopardy, I laid out the skeleton of a new computing paradigm, which IBM has since dubbed "Cognitive Computing". Over the three years since then, cognitive computing is indeed proving to be a radical shift in software and information technology, that disrupts previously understood terms like "performance", "feature", "debugging", and even "truth". In this talk I will give a personal perspective on how cognitive computing has progressed, and is re-shaping the software solution business and ecosystem, and our very expectations of what computers are capable of.

  • Machine Learning Platforms

    Joshua Bloom
    CTO, Wise.io


    As CTO, Josh is responsible for establishing, driving, and communicating the overall technical direction for Wise.io. He is a self-described “data-driven scientist” who leveraged the power of machine learning to enable landmark astronomy discoveries. He is a professor at the University of California, Berkeley where he teaches astrophysics and Python for data science. Josh has been a Sloan Fellow, Junior Fellow at the Harvard Society, and Hertz Foundation Fellow. He has published over 250 journal articles, and in 2010, was awarded the Pierce Prize from the American Astronomical Society. Josh holds a PhD from Caltech and degrees from Harvard and Cambridge. He serves on the Berkeley Startup Cluster Advisory Committee and is an active mentor and guest lecturer at the Haas School of Business.

  • Break

  • Deep Neural Networks in Practice

    Dave Sullivan
    Primary Architect, Ersatz Labs


    Deep learning has recently achieved impressive results in several areas of machine learning. However, practical advice on how to use neural networks continues to be difficult to find. This talk is geared towards practitioners that would like to avoid the theory of how deep neural networks work and focus more on how and why they might use them in practice.

  • Cognitive Computing Is High Dimensional and Holographic

    Pentti Kanerva
    Project Scientist, UC Berkeley's Redwood Center of Theoretical Neuroscience


    The brain's circuits suggest that the basic unit to compute with be a large pattern or a multicomponent vector (e.g., a 10,000-bit word) rather than a number, and that information encoded into a vector be distributed over all its components. Neural nets and deep learning are a step in that direction but need to be complemented with operations on multicomponent vectors that make fully general computing possible.

  • Lightning Talks: Ideas at the Speed of Thought

    The field of Cognitive Computing is rich with ideas and innovation, so in this session we’re inviting both established ventures and startups to share their ideas and tell us about their approaches in a series of 5-minute lightning talks. Contact Tony Shaw at tony@dataversity.net if you’re interested in applying for a presentation slot.
  • Lunch

    Lunch will be provided for registrants.
  • The Future of Communication: Human Insight at Machine Scale

    Kristian Hammond
    Chief Scientist, Narrative Science


    We have entered a new era with regard to our relationship with the machine. Computers have become integrated with our everyday lives, especially with the advent of mobile and multi-device technology, and they finally know more than we do about many of the things we care about. Unfortunately, this now leaves us with massive amounts of data that is exponentially growing as companies and organizations meter and monitor everything – every transaction and every interaction. Surprisingly, however, the machine’s ability to communicate the insights contained in that data has been strikingly limited. Data in its raw form is overwhelming. Tables and spreadsheets require calculation and correlation. Charts and graphs require interpretation. What people really need is the story. In this talk, we will look at Narrative Science’s Quill™, an Artificial Intelligence engine that understands data and uses it to craft narratives that explain what that data mean in clear, concise English language. Based on a foundation of Narrative Analytics, the technology can analyze any data set, identify important insights and then automatically generate a communication for a variety of audiences, skill levels and delivery formats. Put simply, Quill provides human understanding and insight at machine scale.

  • Cognitive Computing with Associative Memories: Reasoning by Similarity

    Paul Hofmann
    CTO, Saffron Technology


    Cognitive Computing with Associative Memories: Reasoning by Similarity We combine two very powerful ideas, Associative Memories and Kolmogorov Complexity for Cognitive Computing in order to make meaning from huge data sets in real time. Associative Memories mimic how humans learn and think but much faster and more powerfully. The Associative Memory functions as a universal NoSQL graph representation of structured and unstructured data. The universal cognitive distance based on Kolmogorov Complexity is used for reasoning by similarity on top of the NoSQL store. We’ll show use cases from health care @Mt Sinai Hospital in NY - automatic diagnosis of echocardiograms in real time, from global risk @The Bill and Melinda Gates Foundation - real time threat scoring reading incoming emails, and from maintenance and repair @Boeing - predicting before a part breaks. Additional Info: This presentation shows real world applications (Boeing, The Gates Foundation and Mtn Sinai) for finding pattern in large data sets combining a NoSQL graph representation (Associative Memories) with state of the art machine learning.

  • Break

  • Understanding Cortical Principles and Building Intelligent Machines

    Subutai Ahmad
    VP Research , Numenta, Inc.


    At Numenta we aim to understand the computational principles underlying the neocortex, and build intelligent machines based on those principles. At its most basic level the cortex takes in a stream of sensory data, builds a sensorimotor model of the world and outputs a stream of motor actions. In this talk I will describe the cortical principles behind these functions, and how we can translate them into a working system. The core ideas have been validated in commercial streaming analytics applications. An optimized implementation is available in the open source project NuPIC. Although we still have much work to do, this work forms a solid foundation for building biologically inspired intelligent machines.

  • Expressive Machines

    Mark Sagar
    Director, Laboratory for Animate Technologies at the Auckland Bioengineering Institute


    The Laboratory for Animate Technologies research is pioneering biologically based methods to give computers the power of expression and naturally intelligent interaction. Our research combines face simulation with computational neuroscience models to create interactive self-animated expressive Avatars which learn through interaction. Face to face interaction is vital to social learning, however detailed interactive models which capture the richness and subtlety of human expression do not currently exist. Our research aims to start to tackle the complexity of interactive expressive facial behaviours involved in social interaction and learning using a bottom up – top down approach, through the use of generative low level neurobiological models which are be modulated by higher level neural system models. To do this we are developing a general simulation framework and modeling language for the integration of established and emerging practical models from the computational neuroscience literature with interactive computer graphics animation. An example of the approach we are taking is embodied in BabyX, an experimental computer generated psychobiological simulation of an infant combining models of the facial motor system and theoretical computational models of basic neural systems involved in interactive behaviour and learning. Exploring the fundamental mechanisms of early communication will lay the groundwork for human computer interfaces of the future.

  • Augmented Attention: First Step to an Artificial Unconscious?

    Karl Schroeder
    Science Fiction Author


    Science fiction narratives privilege consciousness in computer interactions. Characters “jack in” to “higher states of consciousness” in blissful union with the machine. But what if it were better for us to go the other way? Technological culture is enabling us to drive many previously manual, conscious activities into a kind of technologically-mediated unconscious. A banal but important example is cell-phone roaming, where actions of connection and disconnection that used to be deliberate and consciously undertaken are now automatic, invisible, and in large part unchosen. At the same time we can for the first time choose to make ourselves aware of previously unconscious or inaccessible interactions. Eagle Cams and facial recognition systems for animals promise to socialize previously opaque relationships with other entities in our natural environment (you can potentially know your neighborhood racoons as individuals). What is emerging is a broadening spectrum of preferences, or presets, that allow us to customize our personal and collective umwelt to a degree inconceivable to previous generations. We may be approaching a decision point where we will need to declare what about ourselves and our world we will be aware of, and what we will deliberately consign to a new, technologically mediated version of the Unconscious.

  • Search, Structure and Knowledge on the Web

    RV Guha
    Fellow, Google


    A significant fraction of the pages on the web are generated from structured databases. A longstanding goal of the semantic web initiative is to get webmasters to make this structured data directly available on the web. The path towards this objective has been rocky at best. While there have been some notable wins (such as RSS and FOAF), many of the other initiatives have seen little industry adoption. Learning from these earlier attempts has guided the development of schema.org, which appears to have altered the trajectory. Three years after its launch over 5 million Internet domains are using schema.org markup. Google has leveraged structured data in delivering its Knowledge Graph, and users are able to start asking more complex questions and find more relevant information more quickly than ever before. In this talk, we recount the history behind the early efforts and try to understand why some of them succeeded while others failed. We will also discuss some of the interesting research problems being addressed in the context of current efforts.

  • Never-Ending Language Learning

    Tom Mitchell
    Professor, Carnegie Mellon University


    We will never really understand learning by machines or by people until we can build machines that learn many different things, over years, and become better learners over time. We describe our research to build a Never-Ending Language Learner (NELL) that runs 24 hours per day, forever, learning to read the web. Each day NELL extracts (reads) more facts from the web, into its growing knowledge base of beliefs. Each day NELL also learns to read better than the day before. NELL has been running 24 hours/day for over four years now. The result so far is a collection of 70 million interconnected beliefs (e.g., servedWtih(coffee, applePie)), NELL is considering at different levels of confidence, along with millions of learned phrasings, morphological features, and web page structures that NELL uses to extract beliefs from the web. NELL is also learning to reason over its extracted knowledge, and to automatically extend its ontology. Track NELL's progress at http://rtw.ml.cmu.edu, or follow it on Twitter at @CMUNELL.

  • Compositional Model Selection

    Roger Grosse
    Fellow, University of Toronto


    In Bayesian machine learning, models are often built by composing simpler motifs, such as clustering, factor analysis, and binary attributes. This compositional structure has allowed probabilistic models to be tailored to domains as diverse as vision, language, and medicine. Unfortunately, it also presents a challenge: identifying the right model and developing effective inference algorithms both require considerable human time and expertise. I’ll present a grammar of matrix decomposition models whose production rules correspond to simple probabilistic modeling motifs. The compositional structure of the grammar enables generic algorithms for posterior inference and model scoring across thousands of model structures. A greedy search over the grammar automatically identifies sensible models for datasets as diverse as image patches, motion capture, 20 Questions, and U.S. Senate votes, all using exactly the same code.

  • Break

  • The Promise of Prediction Markets

    Robin Hanson
    Chief Scientist, Consensus Point


    The world is full of organizations that make bad decisions, because the people with relevant info don’t have incentive to admit or reveal that info. Prediction markets have shown a consistent ability to introduce better incentives, allowing more accurate estimates, for better decisions. We review the mechanisms that enable prediction markets, data on their use, and many practical problems with building and fielding them.

  • Predicting Models of Human Performance

    Vivienne Ming
    Chief Scientist, Gild


    The dark art of identifying talented professionals for recruitment and promotion has become an obsession in the talent wars of the tech industry. Respected companies such as Google have apply enormous resources to predicting the best developers and managers, and yet the also periodically acknowledge the short comings of their existing methodology (e.g., no more brainteasers). A growing number of companies have begun "testing" candidates by giving them short-term contracts and real problems to solve as a part of the existing team. Of course, very few working professionals can take days off from an existing job for such assessments. An alternative is to build predictive models based on the true subject of interest: the real work of a subject's actual career. For students this means using unobtrusive technology to turn their learning experiences into rich assessments, building cognitive models using unstructured data and ubiquitous sensors. For professionals it means consuming the data of an entire career to make recommendations for hiring, promotion, and team building. We will discuss the concept of continuous passive formative assessment applied both learners and professionals, from kindergärtners to (future) CEOs.

  • Cognitive Computing on Hadoop, Low Tech and High Tech Approaches

    Ted Dunning
    Chief Application Architect, MapR


    With the advent of cost-effective big data technologies, it has become practical for businesses and research group of all sizes to have access to enormous volumes of data as well as to the computational resources required to process them. This has changed the way that computers interact with humans, particularly in the way that computers now can emulate human performance and competence in a number of tasks in ways that were only previously possible in science fiction stories. What is not well known is that there is an broad collection of methods for building these systems which range from extremely simple to highly sophisticated. I will describe several of these approaches to cognitive computing that exhibit different trade-offs in terms of implementation complexity and advanced capabilities and will include results and demonstrations of these techniques. The big news in this presentation is that many of these techniques are now practical even if you don't have a sophisticated data science team packed with PhD's. If you understand your data, you can start building some of these systems right away.

  • Lunch

    Lunch will be provided for registrants.
  • Seven Myths about Human Annotation

    Lora Aroyo
    Associative Professor, VU University Amsterdam


    Human annotation is a critical part of big data semantics, but it is based on an antiquated ideal of a single correct truth. This presentation exposes seven myths about human annotation and dispels the myth of a single truth with examples from research. A new theory of truth, Crowd Truth, is based on subjective human interpretation on the same objects (in our examples, sentences) across a crowd, providing a representation of subjectivity and a range of reasonable interpretations. Crowd Truth has allowed us to identify the myths of human annotation and paint a more accurate picture of human performance of semantic interpretation for machines to attain.

  • Using Artificial Imagination to get Big Answers

    Patrick Lilley
    CEO, Emerald Logic


    Brilliant experts are working on problems that matter: curing diseases, predicting natural disasters, discovering laws of physics. But expertise is bias – the more you know, the less you look around. Further, the world is not made of straight lines. Biology, human behavior, and financial markets are driven by indirect, nonlinear relationships that cannot be discovered by traditional means. It’s imperative that we move beyond statistics and pretty visualizations, to assist experts with machines that can reverse engineer real-world systems on their own, with no preconceptions or limiting assumptions. We’ll show how this is possible, with real-world cases from a variety of domains.

  • Break

  • Panel

    Details coming soon.
  • Close

Agenda

In recent years, numerous technological advancements have combined to give machines a greater ability to understand information, and to learn, to reason, and act upon it. These advancements have reached such sophistication that in some cases machines may even appear to think. As a result, the broad term used to describe this emerging capability is Cognitive Computing.

Cognitive Computing systems may include the following ostensible characteristics:

    • Natural Language Processing
    • Machine Learning
    • Algorithms that learn and adapt
    • Vision-based sensing and image recognition
    • Spatial and contextual awareness
    • Reasoning and decision automation
    • Sophisticated pattern recognition
    • Neural Networks
    • Semantic Understanding
    • Noise Filtering
    • Common Sense
    • Robotic Control
    • Emotional Intelligence

Who is Attending

Join some of your colleagues who have already registered:

  • Managing Director, Technology R&D, Accenture
  • Principal Scientist, Adobe Research
  • Head of Tech. Strategy, American Institute of Physics Publishing
  • Senior Scientist, Boeing
  • Research Scientist, Bosch Research
  • CEO, Bottlenose.com
  • CTO, Catalina Marketing
  • VP Cloud and Big Data, DOCOMO Innovations, Inc.
  • Director, Statistical Consulting, Dun & Bradstreet
  • Advisory Consultant, EMC
  • Principal Analyst, Forrester Research
  • Senior Risk Analyst, HSB
  • Big Data Evangelist, IBM
  • Distinguished Engineer, IBM Watson Group
  • Editor, Institute for Global Futures
  • Software Engineering Manager, Intel
  • Chief Experience Officer, Microsoft
  • Chief Scientist, Energy Analytics, National Renewable Energy Lab
  • CTO, OneShield Inc.
  • Research Manager, PARC
  • Director, Presidio Ventures
  • Research Senior Director, Samsung Research
  • Director, SAP
  • Professor of Economics and Statistics, Seattle University
  • Founder, Tagasauris
  • A.I. Engineering Lead, The MITRE Corporation
  • Senior Software Engineer, YP

Venue

San Jose, California

The Sainte Claire Hotel

302 Market Street
San Jose, CA 95113

We are offering a group rate of $179 for single/double rooms, expiring July 18. Make sure you reserve your room today as there are a limited number of rooms available.

Reserve Your Room

  • Slide Image
  • Slide Image
  • Slide Image
  • Slide Image
  • Slide Image

Registration Options

GROUP REGISTRATION ONLINE: To register your group online, the first two attendees should register individually and pay online. The third free attendee may also register online and should use the coupon code 3RDFREE.

ACADEMIC RATES: Discounted rates apply for current faculty and full-time students at academic institutions. Fax us your current school issued ID to
+1-310-388-1115 or email Samantha at Sam@dataversity.net.

QUESTIONS? Call +1-310-337-2616 x7 or email Samantha at Sam@dataversity.net.

  • Attendance at all Presentations
  • Breakfasts, lunches, reception and networking events
  • Access to all speaker slides

Regular Rate

$1,195

Sponsors

Numenta, Inc., was founded in 2005 to be a catalyst in the emerging field of machine intelligence. Its biologically inspired machine learning technology is based on a theory of the neocortex first described in co-founder Jeff Hawkins’ book, On Intelligence. The technology can be applied to anomaly detection in servers and applications, human behavior, and geo-spatial tracking data, and to the predication and classification of natural language. In addition, Numenta has created NuPIC (Numenta Platform for Intelligent Computing) as an open source project.

If you would like information about sponsorship, or opportunities to promote your products and services, please contact Tony Shaw at tony@dataversity.net.

FAQ

  • Who attends?

    The first Cognitive Computing Forum (C2F) will be attended by approximately 150-senior development, engineering, technical, scientific and product design executives from Silicon Valley and across North America.
  • What airport do I fly in to?

    C2F is being held at the Sainte Claire Hotel in San Jose, California. The nearest airport is Norman Y. Mineta San Jose International Airport but you can also fly into either San Francisco International or Oakland International. Both are about 60 mins away from San Jose and offer various modes of transportation.
  • What if I need to cancel my registration?

    All registration is Risk Free before July 18th. This means that should you have to cancel anytime before the deadline you will receive a full refund on your registration costs.
  • Is there a group discount?

    We do offer a group discount: for every 2 people that register, the 3rd person attends free. However, you must all register at the same time and must be from the same company.
  • Is there parking at the hotel?

    There is parking at the hotel and overnight parking across the street at the Marriot and San Jose Convention Center
  • What else is there to do in San Jose?

    Close to the venue you will find a number of the Bay Area's best restaurants and shops. The Sainte Claire is also centrally located so that if you want to take the train to San Francisco for the day or night the train station is right there.